Implications of Photovoltaic Superposition in the Andean Equatorial Urban Environment through LIDAR

Authors

Abstract

Cities have a high environmental impact on both the site and the surrounding area due to their energy requirements. In this article, we analyze the implementation of photovoltaic (PV) solar technology as a clean energy self-supply alternative in a mixed-residential sector in the Andean equatorial city of Cuenca, Ecuador. Based on the energy demands of the buildings in the selected area, LiDAR is used to identify rooftops that, due to their geometry, orientation, or location, are suitable for PV panel installation. Real energy consumption data are collected, and using SAM software with local climate data, the self-sufficiency capacity is simulated with the integration of PVs to achieve energy neutrality in each property. The combined electrical generation is determined and it is established that the energy demand can be met by 94.88%, with the installation of 427 PV panels of 335 Wp distributed across 29 properties and with a spatial occupation requirement of 11.95% of the available roofs. It is concluded that the entire electrical demand can be self-supplied through rooftop space, and this could even serve as an alternative to meet other to cover alternative demands such as cooking and transportation that are currently met with fossil fuels.

Keywords:

Andean equatorial climate, energy neutral communities, net-zero energy buildings, photovoltaics integrated in buildings

Author Biographies

Esteban Zalamea-Leon, Universidad de Cuenca

Doctor en Arquitectura y Urbanismo de la Universidad del Bio Bio, Chile. Investigador Universidad de Cuenca.

Belen Morocho-Pulla, Universidad de Cuenca

Arquitecta Universidad de Cuenca. 

Mateo Astudillo-Flores, Universidad de Cuenca

Investigador Universidad de Cuenca.

Antonio Barragan-Escandon, Universidad Politecnica Salesiana

Magister y Doctor en Energías Renovables con estudios en España y Ecuador. 

Alfredo Ordoñez-Castro, Universidad de Cuenca

Magister en Edificaciones Sustentables Universidad de Cuenca. Docente Universidad de Cuenca.

References

Agencia de Regulación y Control de Energía y Recursos Naturales no Renovables. (2021). Resolución nro. ARCERNNR -001/2021. https://www.controlrecursosyenergia.gob.ec/wp-content/uploads/downloads/2021/03/Resolucion-ARCERNNR-001-2021.pdf

Agencia de Regulación y Control de Energía y Recursos Naturales no Renovables. (2024). Balance nacional de energía eléctrica. Control de Recursos y Energía del Ecuador. https://www.controlrecursosyenergia.gob.ec/balance-nacional-de-energia-electrica/

Agudelo-Vera, C. M., Leduc, W. R. W. A., Mels, A. R., y Rijnaarts, H. H. M. (2012). Harvesting urban resources towards more resilient cities. Resources, Conservation and Recycling, 64, 3–12. https://doi.org/10.1016/j.resconrec.2012.01.014

Assouline, D., Mohajeri, N., y Scartezzini, J.-L. L. (2017). Quantifying rooftop photovoltaic solar energy potential: A machine learning approach. Solar Energy, 141, 278–296. https://doi.org/10.1016/j.solener.2016.11.045

Axaopoulos, P. J., Fylladitakis, E. D., y Gkarakis, K. (2014). Accuracy analysis of software for the estimation and planning of photovoltaic installations. International Journal of Energy and Environmental Engineering, 5(1). https://doi.org/10.1186/2251-6832-5-1

Banco Interamericano de Desarrollo. (2014). Cuenca ciudad sostenible: Plan de acción. https://propone.net/cccv.ec/docs/cuenca-cuidad-sostenible.pdf

Barragán Escandón, A. y Espinoza Abad, J. L. (2015). Políticas para la promoción de las energías renovables en el Ecuador. En M. R. Peláez Samaniego y J. L. Espinoza Abad (Eds.), Energías renovables en el Ecuador. Situación actual, tendencias y perspectivas (pp. 1-28). Universidad de Cuenca.

Barragán-Escandón, A., Zalamea-León, E., y Terrados-Cepeda, J. (2019). Incidence of photovoltaics in cities based on indicators of occupancy and urban sustainability. Energies, 12(5), 810. https://doi.org/10.3390/en12050810

Barragán-Escandón, E. A., Zalamea-León, E. F., Terrados-Cepeda, J., y Vanegas-Peralta, P. F. (2020). Energy self-supply estimation in intermediate cities. Renewable and Sustainable Energy Reviews, 129, 109913. https://doi.org/10.1016/j.rser.2020.109913

Bergamasco, L. y Asinari, P. (2011). Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: Further improvements by ortho-image analysis and application to Turin (Italy). Solar Energy, 85(11), 2741–2756. https://doi.org/10.1016/j.solener.2011.08.010

Bristow, D. N. y Kennedy, C. A. (2013). Urban metabolism and the energy stored in cities: Implications for resilience bristow and kennedy the energy stored in cities. Journal of Industrial Ecology, 17(5), 656–667. https://doi.org/10.1111/jiec.12038

Brito, M. C., Freitas, S., Guimarães, S., Catita, C., y Redweik, P. (2017). The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data. Renewable Energy, 111, 85–94. https://doi.org/10.1016/j.renene.2017.03.085

Brito, M. C., Gomes, N., Santos, T., y Tenedório, J. A. (2012). Photovoltaic potential in a Lisbon suburb using LiDAR data. Solar Energy, 86(1), 283–288. https://doi.org/10.1016/j.solener.2011.09.031

Caldarelli, C. E. y Gilio, L. (2018). Expansion of the sugarcane industry and its effects on land use in São Paulo: Analysis from 2000 through 2015. Land Use Policy, 76, 264–274. https://doi.org/10.1016/j.landusepol.2018.05.008

Chen, Q., Kuang, Z., Liu, X., y Zhang, T. (2022). Transforming a solar-rich county to an electricity producer: Solutions to the mismatch between demand and generation. Journal of Cleaner Production, 336, 130418. https://doi.org/10.1016/j.jclepro.2022.130418

Coma Bassas, E., Patterson, J., y Jones, P. (2020). A review of the evolution of green residential architecture. Renewable and Sustainable Energy Reviews, 125, 109796. https://doi.org/10.1016/j.rser.2020.109796

Compagnon, R. (2004). Solar and daylight availability in the urban fabric. Energy and Buildings, 36(4), 321–328. https://doi.org/10.1016/j.enbuild.2004.01.009

Doroudchi, E., Alanne, K., Okur, Ö., Kyyrä, J., y Lehtonen, M. (2018). Approaching net zero energy housing through integrated EV. Sustainable Cities and Society, 38, 534–542. https://doi.org/10.1016/j.scs.2018.01.042

Empresa Pública Municipal de Movilidad, Tránsito y Transporte de Cuenca. (2020). Gráfica de valores horarios. http://caire.emov.gob.ec/monitoreo/pages/get-chart.xhtml;jsessionid=qzF-tUlYPgV_dKXwu5ZcR0SsqM6KL62ONqBcu_1W.srv-app-lnxdb?dataType=MET&avgType=HOUR

Flores-Chafla, P., Pesantez-Peñafiel, D., Zalamea-Leon, E., y Barragán-Escandón, A. (2021). Capacidad e integración fotovoltaica en edificios multifamiliares de mediana altura en región ecuatorial andina. ACE, 15(45), 1–25. https://doi.org/10.5821/ace.15.45.9307

Gao, D., Zhao, B., Kwan, T. H., Hao, Y., y Pei, G. (2022). The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions. Applied Energy, 321, 119326. https://doi.org/10.1016/j.apenergy.2022.119326

Griffiths, S. y Sovacool, B. K. (2020). Rethinking the future low-carbon city: Carbon neutrality, green design, and sustainability tensions in the making of Masdar city. Energy Research and Social Science, 62, 101368. https://doi.org/10.1016/j.erss.2019.101368

Hachem, C., Athienitis, A., y Fazio, P. (2011). Parametric investigation of geometric form effects on solar potential of housing units. Solar Energy, 85(9), 1864–1877. https://doi.org/10.1016/j.solener.2011.04.027

Hachem-Vermette, C., Guarino, F., La Rocca, V., y Cellura, M. (2018). Towards achieving net-zero energy communities: Investigation of design strategies and seasonal solar collection and storage net-zero. Solar Energy, 192, 169-185. https://doi.org/10.1016/j.solener.2018.07.024

Instituto Nacional de Estadística y Censos. (2017). Conozcamos Cuenca a través de sus cifras. https://www.ecuadorencifras.gob.ec/conozcamos-cuenca-a-traves-de-sus-cifras/

Izquierdo-Torres, I. F., Pacheco-Portilla, M. G., González-Morales, L. G., y Zalamea-León, E. F. (2019). Simulación fotovoltaica considerando parámetros de integración en edificaciones. Ingenius Revista de Ciencia y Tecnología, (21), 21–31. https://doi.org/10.17163/ings.n21.2019.02

Jacques, D. A., Gooding, J., Giesekam, J. J., Tomlin, A. S., y Crook, R. (2014). Methodology for the assessment of PV capacity over a city region using low-resolution LiDAR data and application to the city of Leeds (UK). Applied Energy, 124, 28–34. https://doi.org/10.1016/j.apenergy.2014.02.076

Jakica, N. (2018). State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics. Renewable and Sustainable Energy Reviews, 81, 1296–1328. https://doi.org/10.1016/j.rser.2017.05.080

Kausika, B. B., Dolla, O., Folkerts, W., Siebenga, B., Hermans, P., y Van Sark, W. G. J. H. M. (2015). Bottom-up analysis of the solar photovoltaic potential for a city in the Netherlands: A working model for calculating the potential using high resolution LiDAR data. Proceedings of the 4th International Conference on Smart Cities and Green ICT Systems SMARTGREENS, 1, 129-135. https://doi.org/10.5220/0005431401290135

Lingfors, D., Bright, J. M., Engerer, N. A., Ahlberg, J., Killinger, S., y Widén, J. (2017). Comparing the capability of low- and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis. Applied Energy, 205, 1216–1230. https://doi.org/10.1016/j.apenergy.2017.08.045

Lingfors, D., Killinger, S., Engerer, N. A., Widén, J., y Bright, J. M. (2018). Identification of PV system shading using a LiDAR-based solar resource assessment model: An evaluation and cross-validation. Solar Energy, 159, 157–172. https://doi.org/10.1016/j.solener.2017.10.061

Lukač, N. y Žalik, B. (2013). GPU-based roofs’ solar potential estimation using LiDAR data. Computers and Geosciences, 52, 34–41. https://doi.org/10.1016/j.cageo.2012.10.010

Lund, P. (2012). Large-scale urban renewable electricity schemes - Integration and interfacing aspects. Energy Conversion and Management, 63, 162–172. https://doi.org/10.1016/j.enconman.2012.01.037

Margolis, R., Gagnon, P., Melius, J., Phillips, C., y Elmore, R. (2017). Using GIS-based methods and lidar data to estimate rooftop solar technical potential in US cities. Environonmental Research Letters, 12. https://doi.org/10.1088/1748-9326/aa7225

Montenegro-Orozco, J. (2013). Panorama de las energías renovables y de la eficiencia energética en América Latina. Pontificia Universidad Católica del Ecuador, Observatorio de Política Socio Ambiental.

Mulcué-Nieto, L. F. y Mora-López, L. (2014). A new model to predict the energy generated by a photovoltaic system connected to the grid in low latitude countries. Solar Energy, 107, 423–442. https://doi.org/10.1016/j.solener.2014.04.030

Muñoz-Vizhñay, J. P., Rojas-Moncayo, M. V., y Barreto-Calle, C. R. (2018). Incentivo a la generación distribuida en el Ecuador. Ingenius Revista de Ciencia y Tecnología, (19), 60–68. https://revistas.ups.edu.ec/index.php/ingenius/article/view/19.2018.06/0

Naciones Unidas. (s. f.). Conferencia sobre la vivienda y el desarrollo urbano sostenible Hábitat III. Naciones Unidas. https://www.un.org/sustainabledevelopment/es/habitat3/

Naciones Unidas. (2015, 25 de septiembre). La Asamblea General adopta la Agenda 2030 para el desarrollo sostenible. https://www.un.org/sustainabledevelopment/es/2015/09/la-asamblea-general-adopta-la-agenda-2030-para-el-desarrollo-sostenible/

National Renewable Energy Agency. (2022). System Advisor Model - SAM. https://sam.nrel.gov

O’Neill, K. y Gibbs, D. (2020). Sustainability transitions and policy dismantling: Zero carbon housing in the UK. Geoforum, 108, 119–129. https://doi.org/10.1016/j.geoforum.2019.11.011

Ordoñez-Vasconez, E. (2017). Determinación de zonas con potencial para generación fotovoltaica en la ciudad de Cuenca, a través de la adquisición de datos de un piranómetro y modelación en SIG [Trabajo de graduación]. Universidad del Azuay. https://dspace.uazuay.edu.ec/handle/datos/6946

Poggi, F., Firmino, A., y Amado, M. (2018). Planning renewable energy in rural areas: impacts on occupation and land use. Energy, 155, 630-640. https://doi.org/10.1016/j.energy.2018.05.009

Secretaría Nacional de Planificación. (2021). Plan de Creación de Oportunidades 2021 - 2025. In Secretaría Nacional de Planificación. https://www.planificacion.gob.ec/wp-content/uploads/2021/09/Plan-de-Creación-de-Oportunidades-2021-2025-Aprobado.pdf

Serrano-Guerrero, X., Alvarez-Lozano, D., y Romero, S. F. L. (2019). Influence of local climate on the tilt and orientation angles in fixed flat surfaces to maximize the capture of solar irradiation: A case study in Cuenca-Ecuador. 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico. https://doi.org/10.1109/ROPEC48299.2019.9057102

Srećković, N., Lukač, N., Žalik, B., y Štumberger, G. (2016). Determining roof surfaces suitable for the installation of PV (photovoltaic) systems, based on LiDAR (Light Detection And Ranging) data, pyranometer measurements, and distribution network configuration. Energy, 96, 404–414. https://doi.org/10.1016/j.energy.2015.12.078

Ten clean energy myths. (2022, 31 de mayo). Cinnamon Energy Systems. https://cinnamon.energy/ten-clean-energy-myths/

Ullah, K. R., Prodanovic, V., Pignatta, G., Deletic, A., y Santamouris, M. (2021). Technological advancements towards the net-zero energy communities : A review on 23 case studies around the globe. Solar Energy, 224, 1107–1126. https://doi.org/10.1016/j.solener.2021.06.056

Vaca-Revelo, D. y López-Villada, J. (2019). Mapa solar del Ecuador. Scinergy.

Wegertseder, P., Lund, P., Mikkola, J., y García Alvarado, R. (2016). Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential. Solar Energy, 135, 325–336. https://doi.org/10.1016/j.solener.2016.05.061

Wheeler, S. M. y Segar, R. B. (2013). Zero net energy at a community scale: UC Davis West Village. En F. P. Sioshansi (Ed.), Energy efficiency: Towards the end of demand growth (pp. 305-324). Elsevier. https://doi.org/10.1016/B978-0-12-397879-0.00012-8

Williams, J. (2016). Can low carbon city experiments transform the development regime? Futures, 77, 80–96. https://doi.org/10.1016/j.futures.2016.02.003

World Bank Group y SolarGis. (2020). El Sagrario. Global Solar Atlas. https://globalsolaratlas.info/detail?c=-3.045211,-78.879776,11&s=-2.89641,-78.999939&m=site

Yáñez, C., Fissore, A., y Leiva, A. (2019). Informe final de usos de la energía de los hogares Chile 2018. Resultado 3500 encuestas. Corporación de Desarrollo Tecnológico. https://www.energia.gob.cl/sites/default/files/documentos/informe_final_caracterizacion_residencial_2018.pdf

Yildirim, D., Büyüksalih, G., y Şahin, A. D. (2021). Rooftop photovoltaic potential in Istanbul: Calculations based on LiDAR data, measurements and verifications. Applied Energy, 304, 117743. https://doi.org/10.1016/j.apenergy.2021.117743

Zalamea-León, E. y Barragán-Escandón, A. (2021). Arquitectura, sol y energía. Universidad de Cuenca, Universidad Politécnica Salesiana. https://dspace.ucuenca.edu.ec/handle/123456789/37790

Zalamea-León, E., Mena-Campos, J., Barragán-Escandón, A., Parra-González, D., y Méndez-Santos, P. (2018). Urban photovoltaic potential of inclined roofing for buildings in heritage centers in equatorial areas. Journal of Green Building, 13(3), 45–69. https://doi.org/10.3992/1943-4618.13.3.45

Zamanakos, G., Tsochatzidis, L., Amanatiadis, A., y Pratikakis, I. (2021). A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving. Computers and Graphics, 99, 153–181. https://doi.org/10.1016/j.cag.2021.07.003

Zambrano-Asanza, S., Zalamea-León, E. F., Barragán-Escandón, A., Parra-González, D., Barragán-Escandón, E. A., y Parra-González, A. (2019). Urban photovoltaic potential estimation based on architectural conditions, production-demand matching, storage and the incorporation of new eco-efficient loads. Renewable Energy, 142, 224–238. https://doi.org/10.1016/j.renene.2019.03.105

Zhang, C., Cao, W., Xie, T., Wang, C., Shen, C., Wen, X., y Mao, C. (2022). Operational characteristics and optimization of Hydro-PV power hybrid electricity system. Renewable Energy, 200, 601–613. https://doi.org/10.1016/j.renene.2022.10.005

Zhang, H., Jarić, I., Roberts, D. L., He, Y., Du, H., Wu, J., Wang, C., y Wei, Q. (2020). Extinction of one of the world’s largest freshwater fishes: Lessons for conserving the endangered Yangtze fauna. Science of the Total Environment, 710(8), 136242. https://doi.org/10.1016/j.scitotenv.2019.136242